Проблемы гидромеханникиВихри в идеальной жидкости
Если пренебречь вязкостью и рассматривать осесимметричные движения несжимаемой жидкости, стационарные в системе координат, движущейся вместе с вихрем, то уравнения, связы

в цилиндрических координатах (r,a,z), имеют вид

постоянно вдоль линии тока, т. е. что

где F — произвольная функция.
Так как движение на бесконечности должно быть потенциальным, то F должна тождественно обращаться в нуль вне некоторой области, ограниченной замкнутой линией тока, а на этой линии составляющие скорости должны быть непрерывными. При заданной F возникает типичная задача о склейке потенциального и вихревого течения, аналогичная тем, кторые мы рассматривали в гл. V.
В такой форме эта задача не исследована даже для простейших функций F, известны только отдельные примеры точных и приближенных решений. Пример точного решения дает сферический вихрь Хилла. Здесь завихренность распределена внутри шара радиуса R по закону

а = b2r, где b — постоянная; вне шара поток—потенциальный и жидкость, содержащаяся в этом шаре, движется вместе с вихрем со скоростью

относительно неподвижной системы координат.
Вихри такого типа в опытах не наблюдаются. Большее сходство с наблюдениями имеет приближенное решение, полученное еще Максвеллом, где завихренная область представляет собой тор, радиус а поперечного сечения которого много меньше радиуса R самого тора. Тороидальный вихрь Максвелла движется со скоростью

а форма объема, заключенного внутри замкнутой поверхности тока и движущегося вместе с вихрем, зависит
;
эта область, как и область завихренности, имеет тороидальную форму; в опытах этот случай не наблюдается, что, по-видимому, можно объяснить его неустойчивостью (строгого исследования здесь еще нет).
. При постоянной F эта задача совпадает
где 6 — постоянная (Лам б [4],
стр. 308—309), но он далек от практики.
Итак, в схеме идеальной жидкости возможны различные модели кольцевых вихрей — эта схема не дает никаких условий для определения вида функции F и формы области, в которой завихренность отлична от нуля. Поэтому ясно, что решения, полученные в рамках невязкой несжимаемой жидкости, не позволяют определить изменение скорости и размеров вихрей, наблюдаемых в экспериментах.
|