Меню сайта

Предыдущая     |         Содержание     |    следующая

Теория систем автоматического управления

Сведение неоднородного уравнения к однородному

, причем еди-

Введем новую переменную

Решение неоднородного уравнения (7,4) для г(С) может быть записано в виде

что подобно решению типа (7.6), Этому решению соответствует исходное дифференциальное уравнение без правой части

Из уравнения (7.8) нетрудно определить связь между начальными значениями для исходной переменной х и повой переменной г при I = 0:

После нахождения решения для переменной г по формуле (7.8) можно легко вернуться к исходной переменной х смещением решения на величину

Однако эти рассуждения пока справедливы для случая, когда степень операторного многочлена в правой части (7.4) равна нулю (?п = 0) и дифференциальное уравнение (7,4) имеет вид

Остановимся па этом вопросе более подробно в случае приложения возмущения тина ступенчатой функции.

почти всегда принимают нулевые

и т, д, В дальнейшем под нулевыми

начальными значениями будем понимать именно эти равенства.

начальных значений имеют место равенства

Таким образом, для самой координаты и первых (п -т - 1) производных нулевые начальные значения сохраняются и после приложения ступенчатой функции.

Для остальных начальных значений выполняются соотношения

Если воздействие прикладывается в виде скачка, не равного единице, то вместо следует поставить величину скачка.

П р и м с р. Найдем реакцию системы на единичную ступенчатую функцию при нулевых начальных значениях, т. с. переходную функцию, если дифференциальное уравнение имеет вид

находим корни:

в соответствии с (7.11) и (7.12), будут

Определяем установившееся значение искомой координаты:

. Начальные значения для новой переменной:

и случая комплексных корней имеем

где

Таким образом

Возвращаясь к исходной координате, получаем переходную функцию

так как в случае

и задача заключается только в отыскании начальных значений при t = +0.

вместо (7.11) для первых п ~ т ~ 2 начальных значений получим

и вместо (7.12) для всех остальных начальных значений

умноженную на время. Если воздействие поступает в виде неединичного импульса, то в эти формулы вместо единицы необходимо подставить заданную величину импульса.

, т. е. перелом кривой, будет уже при т = п - 2, а скачок самой величины х — при т = п - 1.

П р и м е р. Найдем реакцию системы на единичный импульс при нулевых начальных значениях, т. е. функцию веса для дифференциального уравнения, приведенного в предыдущем примере.

Так как в рассматриваемом примере т = п - 1, то в соответствии с (7.14) получим